Abstract
Understanding the adhesiveness of fine particulate materials at high temperatures is important to achieving the stable, economical operation of various industrial systems. In the present research, two types of calcium carbonate (CaCO3) particles having different mean particle sizes (often used as heat carriers in energy systems) were evaluated. The tensile strengths of beds of these materials were determined at various temperatures by tensile strength measurement tester. The adhesiveness was found to increase greatly at 500 °C even without chemical reactions or sintering, and X-ray diffraction analyses showed thermal expansion of the CaCO3 crystals at 500 °C. Pure alumina (Al2O3) and silica (SiO2) microparticles did not exhibit the same pronounced increases in tensile strength or crystal expansion at this same temperature. Because the surface distances between these primary particles were presumably small, it is proposed that van der Waals forces between the particles greatly increased at high temperatures. The addition of Al2O3 nanoparticles to the CaCO3 decreased the tensile strengths of the powder beds both at ambient temperature and at 500 °C. The experimental data confirm that the surface distances between primary particles were increased upon incorporating the nanoparticles, such that the tensile strength decreased during heat treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.