Abstract

Neddylation, a post-translational modification process, plays a crucial role in various human neoplasms. However, its connection with kidney renal clear cell carcinoma (KIRC) remains under-researched. We validated the Gene Set Cancer Analysis Lite (GSCALite) platform against The Cancer Genome Atlas (TCGA) database, analyzing 33 cancer types and their link with 17 neddylation-related genes. This included examining copy number variations (CNVs), single nucleotide variations (SNVs), mRNA expression, cellular pathway involvement, and methylation. Using Gene Set Variation Analysis (GSVA), we categorized these genes into three clusters and examined their impact on KIRC patient prognosis, drug responses, immune infiltration, and oncogenic pathways. Afterward, our objective is to identify genes that exhibit overexpression in KIRC and are associated with an adverse prognosis. After pinpointing the specific target gene, we used the specific inhibitor MLN4924 to inhibit the neddylation pathway to conduct RNA sequencing and related in vitro experiments to verify and study the specificity and potential mechanisms related to the target. This approach is geared towards enhancing our understanding of the prognostic importance of neddylation modification in KIRC. We identified significant CNV, SNV, and methylation events in neddylation-related genes across various cancers, with notably higher expression levels observed in KIRC. Cluster analysis revealed a potential trade-off in the interactions among neddylation-related genes, where both high and low levels of gene expression are linked to adverse prognoses. This association is particularly pronounced concerning lymph node involvement, T stage classification, and Fustat score. Simultaneously, our research discovered that PSMB10 exhibits overexpression in KIRC when compared to normal tissues, negatively impacting patient prognosis. Through RNA sequencing and in vitro assays, we confirmed that the inhibition of neddylation modification could play a role in the regulation of various signaling pathways, thereby influencing the prognosis of KIRC. Moreover, our results underscore PSMB10 as a viable target for therapeutic intervention in KIRC, opening up novel pathways for the development of targeted treatment strategies. This study underscores the regulatory function and potential mechanism of neddylation modification on the phenotype of KIRC, identifying PSMB10 as a key regulatory target with a significant role in influencing the prognosis of KIRC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.