Abstract

Dissolved organic matter (DOM) derived from black carbon (BC) can migrate from soil to river by rainfall or snow melting in nature. Because of the incomplete biomass combustion, BC produced at various temperatures is mixed, which is hard to divide the DOM at single temperature. Then it is difficult to explore the properties and risks of DOM in detail. Therefore, corn straws were selected to prepare BC under different heating temperature (200°C, 250°C, 300°C, 350°C, 400°C and 450°C). Germination index combined the excitation-emission matrix-parallel factor (PARAFAC) and two-dimensional correlation spectra was employed to clarify the phytotoxicity and the PARAFAC components of DOM derived from BC at single temperature. Results showed that BC was hard to dissolve in water, but most of its DOM were toxic. Heating temperature promoted the formation of simple and complex fluorescent components. Combined with volume integration, it is the complex peaks of fluorescent components to determine the phytotoxicity of DOM derived from BC. These results would help to build a deep understanding of the fluorescence characteristics and toxicity of BC at different temperatures and emphasize the importance of reducing straw by burning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.