Abstract

This study evaluated the potential of sugarcane bagasse fly ash, collected from boiler exhaust stacks via a bypass pipe, as a renewable supplementary cementitious material. The bagasse fly ash was ground into three different particle sizes (D50 of 10, 20, and 30 μm) and characterized in terms of morphology, porosity, specific surface area, and pozzolanic activity. The influence of the ashes on paste hydration was investigated using isothermal calorimetry. Mortars were then tested with 20% cement replacement by fly ash, analyzing packing density, compressive strength evolution, and durability against sulfuric acid. Results indicated the suitability of the fly ash as a supplementary cementitious material, with low contamination and greater pozzolanic activity at smaller particle sizes. This enhanced initial hydration and long-term strength, with finer ashes showing superior mechanical properties when compared to the reference mortar (an 8% increase). Mortars with fly ash exhibited higher packing density and reduced mass loss under sulfuric acid attack, but increased water absorption and capillarity, alongside decreased compressive strength compared to the reference. Briefly, the findings highlighted that the potential of bagasse fly ash as a promising low cost and eco-beneficial material for sustainable construction practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.