Abstract

BackgroundUnplanned hospital readmissions are serious medical adverse events, stressful to patients, and expensive for hospitals. This study aims to develop a probability calculator to predict unplanned readmissions (PURE) within 30-days after discharge from the department of Urology, and evaluate the respective diagnostic performance characteristics of the PURE probability calculator developed with machine learning (ML) algorithms comparing regression versus classification algorithms.MethodsEight ML models (i.e. logistic regression, LASSO regression, RIDGE regression, decision tree, bagged trees, boosted trees, XGBoost trees, RandomForest) were trained on 5.323 unique patients with 52 different features, and evaluated on diagnostic performance of PURE within 30 days of discharge from the department of Urology.ResultsOur main findings were that performances from classification to regression algorithms had good AUC scores (0.62–0.82), and classification algorithms showed a stronger overall performance as compared to models trained with regression algorithms. Tuning the best model, XGBoost, resulted in an accuracy of 0.83, sensitivity of 0.86, specificity of 0.57, AUC of 0.81, PPV of 0.95, and a NPV of 0.31.ConclusionsClassification models showed stronger performance than regression models with reliable prediction for patients with high probability of readmission, and should be considered as first choice. The tuned XGBoost model shows performance that indicates safe clinical appliance for discharge management in order to prevent an unplanned readmission at the department of Urology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.