Abstract

Commercial spectroscopic gas–solid cell reactors are routinely used to analyze the dynamics of the catalyst (catalyst pelletized as a disc) structure and retained/adsorbed species using multiple operando techniques. These instruments have revolutionized the understanding of many catalytic reactions, including the methanol-to-hydrocarbon reactions. We propose a reaction engineering framework to evaluate spectroscopic cells based on (a) analyzing the fluid dynamic performance, (b) comparing their performance with a reference packed-bed reactor, and (c) the assessment of the external and internal mass transfer limitations. We have used a Specac HTHP and a Linkam THMS600 cell reactors coupled with the corresponding gas conditioning, spectroscopic, and mass spectrometry apparatuses. Our results reveal that these cells approach a perfect mixing only with several equivalent tanks in series and they are reliable at low catalyst loadings (thin disc) and high flowrates (low spacetimes). Under these conditions, we can avoid external-internal mass transfer limitations and fluid dynamic artifacts (e.g., bypassing or dead/stagnant volume zones), obtaining intrinsic kinetics with the corresponding operando spectroscopic signatures. The proposed methodology allows to understand the influence of process parameters and potential design modifications on the observed kinetic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.