Abstract

ABSTRACT Ground water beneath the U.S. Department of Energy (USDOE) Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The authors evaluated biodegradation as a remedial option by measuring RDX mineralization in Pantex aquifer microcosms spiked with 14C-labeled RDX (75 g soil, 15 ml of 5 mg RDX/L). Under anaerobic conditions and constant temperature (16°C), cumulative 14CO2 production ranged between 52% and 70% after 49 days, with nutrient-amended (C, N, P) microcosms yielding the greatest mineralization (70%). The authors also evaluated biodegradation as a secondary treatment for removing RDX degradates following oxidation by permanganate (KMnO4) or reduction by dithionite-reduced aquifer solids (i.e., redox barriers). Under this coupled abiotic/biotic scenario, we found that although unconsumed permanganate initially inhibited biodegradation, > 48% of the initial 14C-RDX was recovered as 14CO2 within 77 days. Following exposure to dithionite-reduced solids, RDX transformation products were also readily mineralized (> 47% in 98 days). When we seeded Pantex aquifer material into Ottawa Sand that had no prior exposure to RDX, mineralization increased 100%, indicating that the Pantex aquifer may have an adapted microbial community that could be exploited for remediation purposes. These results indicate that biodegradation effectively transformed and mineralized RDX in Pantex aquifer microcosms. Additionally, biodegradation may be an excellent secondary treatment for RDX degradates produced from in situ treatment with permanganate or redox barriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.