Abstract

The aim of this study was to evaluate a narrowly trained convolutional neural network (CNN) denoising algorithm when applied to images reconstructed differently than training data set. A residual CNN was trained using 10 noise inserted examinations. Training images were reconstructed with 275 mm of field of view (FOV), medium smooth kernel (D30), and 3 mm of thickness. Six examinations were reserved for testing; these were reconstructed with 100 to 450 mm of FOV, smooth to sharp kernels, and 1 to 5 mm of thickness. When test and training reconstruction settings were not matched, there was either reduced denoising efficiency or resolution degradation. Denoising efficiency was reduced when FOV was decreased or a smoother kernel was used. Resolution loss occurred when the network was applied to an increased FOV, sharper kernel, or decreased image thickness. The CNN denoising performance was degraded with variations in FOV, kernel, or decreased thickness. Denoising performance was not affected by increased thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.