Abstract

Wu and coworkers introduced an active basis model (ABM) for object recognition in 2010, in which the learning algorithm tends to sketch edges in textures. A grey-value local power spectrum was used to find a common template and deformable templates from a set of training images and to detect an object in new images by template matching. In this paper, we propose a color-based active basis model (color-based ABM for short), which incorporates color information. We adopt the framework of Wu et al. in the learning, detection, and classification of the color-based ABM. However, in order to improve the performance in object recognition, we modify the framework of Wu et al. by using different color-based features in both the learning and template matching algorithms. In this color-based ABM approach, two types of learning (i.e., supervised learning and unsupervised learning) are also explored. Moreover, the usefulness of the color-based ABM for practical object recognition in computer vision applications is demonstrated and its significant improvement in recognizing objects is reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.