Abstract

Near real-time GNSS double-difference network processing is a traditional method still used within the EUMETNET EIG GNSS Water Vapour Programme (E-GVAP) for the atmosphere water vapour content monitoring in support of Numerical Weather Prediction. The standard production relies on estimating zenith tropospheric path delays (ZTDs) for GNSS ground stations with a 1-hour time resolution and a latency of 90 minutes. The Precise Point Positioning (PPP) method in real-time mode has reached the reliability and the accuracy comparable to the near real-time solution. The effectiveness of the PPP method relies on exploiting undifferenced observations from individual receivers, thus optimal use of all tracked systems, observations and signal bands, possible in-situ processing, high temporal resolution of estimated parameters and almost without any latency. The solution may implicitly include horizontal tropospheric gradients and slant tropospheric path delays for enabling the monitoring of a local asymmetry of the troposphere around each individual site. We have been estimating ZTD and gradients in real-time continuously since 2015 with a limited number of stations. Recently, the solution has been extended to a pan-European and global production consisting of approximately 200 stations. The real-time product has been assessed cross-comparing ZTDs and horizontal gradients at 11 collocated stations and by validating real-time ZTDs with respect to the final post-processing products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.