Abstract

Generalized additive models are proposed for a better understanding of the underlying mechanisms for anchovy variations in abundance. Environmental variables derived from satellite imagery (surface chlorophyll, sea surface temperature and wind-mixing index), river discharge (Rhone River and Ebre River) and anchovy landings (landings per unit of effort) as proxy for abundance were used, and three fishing zones were defined along the Catalan Coast. A time shift among wind index mixing, sea surface temperature and chlorophyll was observed for these variables to be significantly correlated with anchovy. Results pointed out to processes that appear to greatly influence species abundance and affect different life stages of anchovy (conditions preceding reproduction, larvae growth and survival and recruits growth). A high proportion of anchovy LPUE variability could be explained by environmental variables. Thus, some univariate models explained deviance are more than 50%, even up to around 70% of anchovy variability. In several cases the deviance explained by a given variable was even higher at the longer time-lags. Among all univariate and bivariate models fitted, the model that best explained anchovy LPUE variability, 79% of total deviance, was a model proposed for the central zone, based on the additive effect of surface chlorophyll and Rhone River discharge, considering time lags of 15 and 18 months, respectively, for each variable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.