Abstract

Abstract Background The etiology of keratoconus most likely involves substantial biomechanical interactions. The goal of this study was to characterize corneal biomechanics using computer modeling techniques in order to elucidate the pathogenesis of keratoconus in biomechanical terms. Methods Finite element models of the cornea that are based on anatomical dimensions were developed. Cases comprising of thinned regions as well as regions with degraded isotropic mechanical properties and a case of gradual stiffening towards the limbus were subjected to normal intraocular pressures. The resulting deformations and dioptric power maps were analyzed and compared. Three additional cases that are based on a model of a thin plate were used to demonstrate the effect a transition from orthotropic to isotropic mechanical properties would have in terms of deformations and diopteric power maps. Results Results show that under 10mmHg intraocular pressure, decreasing the modulus of elasticity and thinning have opposite effects on the dioptric power maps of a homogenous isotropic cornea. When the thickness was maintained at 500 microns and the stiffness was decreased from 0.4 MPa to 0.04 MPa there was an increase of more than 40 diopters. For a cornea with a constant modulus of elasticity value of 0.4 MPa, 350 microns decrease in thickness resulted in a decrease of approximately 25 diopters. The anisotropic non-homogenous characteristics of the cornea have shown to be critical for maintaining the morphology of a healthy corneal. Conclusions Degradation of the circumferential fibers may very well be an initiating factor of a biomechanical process in which a bulge is gradually created from a presumably healthy cornea under normal underlying pressures and therefore, the identification of the early stages of keratoconus might be achievable by monitoring the in-vivo corneal fiber distribution.

Highlights

  • The etiology of keratoconus most likely involves substantial biomechanical interactions

  • While the deformations are shown for the entire corneal domain, the dioptric power maps are presented on an 8 mm domain as commonly displayed by standard topographers in order to emphasize the maximal optical region

  • It is evident that while the maximum diopter value for the nominal case is located in the periphery with a gradual decrease towards the center of the cornea, the maximum diopter for the compliant case is in the center of the cornea and decreases towards the periphery

Read more

Summary

Introduction

The etiology of keratoconus most likely involves substantial biomechanical interactions. The goal of this study was to characterize corneal biomechanics using computer modeling techniques in order to elucidate the pathogenesis of keratoconus in biomechanical terms. The cornea forms the transparent outer covering of the visible colored portion of the eyeball. Normal corneas have a horizontal diameter (white to white) in the range of 11-12 mm in 95% of the cases [1,2,3]. The central area that lies directly in front of the pupil is the main optical zone and is about 3-4 mm in diameter. In healthy cases the radius of curvature of the central cornea has been reported to be 7.86 ± 0.26 mm (mean ± standard deviation).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.