Abstract
In this work, reversible addition-fragmentation chain transfer (RAFT) polymerization and Schiff base chemistry was combined to fabricate self-healing adhesives. An esterification reaction was first performed to prepare ethyl cellulose based macroinitiators. Then, a “grafting from” RAFT of vanillin methacrylate and lauryl methacrylate was used to obtain graft copolymers. DSC result showed that the glass transition temperature was manipulated via changing the ratio of vanillin and fatty acids moieties. NMR spectrum analysis demonstrated the presence of aldehyde groups, which were available for the dynamic crosslinking to generate a network as self-healing adhesives. The adhesive test showed that the shear strength could reach 0.81 MPa with a self-healing efficiency of 98.7 %. The bottlebrush structures of copolymers and reversibility of Schiff base chemistry might collaboratively contribute to the high self-healing efficiency. This study provides a facile way to fabricate high-performance self-healing adhesives from ethyl cellulose and renewable resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.