Abstract

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important food-borne pathogen responsible for disease outbreaks worldwide. In order to colonize the human gastrointestinal (GI) tract and cause disease, EHEC must be able to sense the host environment and promote expression of virulence genes essential for adherence. Ethanolamine (EA) is an important metabolite for EHEC in the GI tract, and EA is also a signal that EHEC uses to activate virulence traits. Here, we report that EA influenced EHEC adherence to epithelial cells and fimbrial gene expression. Quantitative reverse transcriptase PCR indicated that EA promoted the transcription of the genes in characterized and putative fimbrial operons. Moreover, putative fimbrial structures were produced by EHEC cells grown with EA but not in medium lacking EA. Additionally, we defined two previously uncharacterized EA-regulated fimbrial operons, loc10 and loc11. We also tested whether choline or serine, both of which are also components of cell membranes, activated fimbrial gene expression. In addition to EA, choline activated fimbrial gene expression in EHEC. These findings describe for the first time the transcription of several putative fimbrial loci in EHEC. Importantly, the biologically relevant molecules EA and choline, which are abundant in the GI tract, promoted expression of these fimbriae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.