Abstract

The aim of this study was to characterize CYP2E1 degradation in vivo using PS-341, a potent proteasome inhibitor. Previously, only in vitro evidence showed that CYP2E1 induced by ethanol is degraded by the proteasome. Male Wistar rats were given ethanol intragastrically for 30 d. Ethanol was withdrawn at the same time that PS-341 was injected, 24 h before the rats were sacrificed. The liver proteasomal chymotrypsin-like activity (ChT-L) in rats fed ethanol was inhibited. After ethanol withdrawal, the proteasomal ChT-L activity returned to control levels. In the ethanol-withdrawn rats injected with PS-341, the ChT-L activity was significantly inhibited before withdrawal ( p < .001). Ethanol treatment induced a 3-fold increase in CYP2E1 levels determined by Western blot. When ethanol was withdrawn, CYP2E1 decreased to control levels. In ethanol-withdrawn rats injected with PS-341, CYP2E1 remained at the induced level. These results show, for the first time, that the proteasome is responsible for ethanol-induced CYP2E1 degradation in vivo. Supported by NIH/NIAAA 8116.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.