Abstract
BackgroundExpanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time.ResultsEthanol yields between 249 and 256 kg Mg−1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg−1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g−1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha−1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively.ConclusionsAFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Highlights
Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably
Biomass composition and energy value The composition and calorific value of sugarcane bagasse and cane leaf matter (CLM) are presented in Table 1 and was similar to that previously reported for South African industrial sugarcane residues [47]
In the context of expanding the sugar industry towards a diversified bioeconomy, the use of sugarcane harvest residues in a 2G biorefinery presents an attractive opportunity for increasing ethanol yields per unit of land cultivated, while facilitating the sharing of existing logistics and supply chain infrastructure with the sugar industry
Summary
Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. Depending on the amount of CLM that can be recovered from the field and proximity to the sugar mill, these residues can either be baled or transported together with the sugarcane stalk to the sugar mill to supply either 2G biofuel production or energy cogeneration [22] The availability of these residues as either supplementary feedstock to sugarcane juice in integrated 1G–2G biorefineries or as sole feedstock in standalone 2G biorefineries annexed to sugar mills, has the potential to enhance the ethanol yield per unit land without expanding the cultivation area, while maximizing environmental benefits and minimizing capital and production costs [15, 20, 23]. In addition to energy integration benefits, these 2G sugarcane residue biorefineries integrated to sugar mills or 1G biorefineries present an attractive opportunity for sharing of existing feedstock supply, handling infrastructure and logistical systems that currently represent a significant hurdle for the nascent 2G biofuel production industry [24]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.