Abstract

Despite some evidence of the underlying molecular mechanisms the neuronal basis of ethanol-induced effects on the neurovascular coupling that forms the BOLD (blood oxygenation level dependent) signal is poorly understood. In a recent fMRI (functional magnetic resonance imaging) study monitoring ethanol-induced changes of the BOLD signal a reduction of the amplitude and a prolongation of the BOLD signal were observed. However, the BOLD signal is assumed to consist of a complex superposition of different underlying signals. To gain insight how ethanol influences stimulus efficacy, oxygen extraction, transit time and vessel-related parameters the fMRI time series from the sensori-motor and the visual cortex were analyzed using the balloon model. The results show a region-dependent decrease of the stimulus efficacy to trigger a post-stimulus neurovascular response as well as a prolongation of the transit time through the venous compartment. Oxygen extraction, feedback mechanisms and other vessel-related parameters were not affected. The results may be interpreted as follows: the overall mechanisms of the neurovascular coupling are still acting well at the moderate ethanol level of about 0.8‰ (in particular the vessel-related parts), but the potency to evoke a neurovascular response is already compromised most obviously in the supplementary motor area responsible for complex synchronizing and planning processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.