Abstract

Excellent specific discharge capacity and cycling stability are essential for high-performance lithium-sulfur (Li-S) batteries, but hard to achieve simultaneously due to the shuttle effect and sluggish reaction kinetics of polysulfides. Herein, we report an etch-evaporation enabled defect engineering strategy to fabricate atomically dispersed, manganese-nitrogen doped porous carbon (Mn-N-C) for separator modification. With Zinc atoms evaporation and NH3 etch, abundant spatial confinement sites and N dopants are created in Mn-N-C, and the final Mn loading can reach as high as 2.31 wt%. Density function theory (DFT) calculations reveal that Mn atoms in Mn-N-C play a crucial role in polysulfides adsorption and electrical conductivity enhancement. Therefore, the Mn-N-C modified separator can exhibit high conductivity, strong immobilization and excellent catalytic activity, thus favoring polysulfides conversion and Li2S nucleation/dissolution. The Li-S battery equipped with the modified separator exhibits an initial discharge capacity of 1596 mAh g−1 at 0.1C (S loading mass was 1.2 mg cm−2), which decays 0.045 % per cycle after 1000 cycles at 1C. Our work demonstrates that the etch-evaporation enabled defect engineering strategy is effective for fabrication of high-performance Li-S battery catalyst; it also shows an attractive prospect to synthesize other high loading metal ion dispersed, nitrogen doped carbon materials for electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.