Abstract

TNF-alpha plays a pivotal role in the pathogenesis of acute pancreatitis. Recent studies have shown that TNF-alpha inhibition significantly ameliorates the course of experimental acute pancreatitis, but in this context, the effects of Etanercept, a novel anti-TNF-alpha agent, have not been investigated so far. The aims of the present study are (i) to assess the effects of pharmacological inhibition of TNF-alpha by means of Etanercept on the inflammatory response and apoptosis in a murine model of necrotizing acute pancreatitis and (ii) to compare the results to those observed in TNF-alpha receptor 1 knockout (TNFR1-KO) mice. Necrotizing acute pancreatitis was induced in TNF-alpha wild type for TNFR1 (WT) and TNFR1-KO mice by intraperitoneal injection of cerulein (hourly x5, 50 microg/kg). In another group of WT mice, Etanercept was administered (5 or 10 mg/kg, s.c.) at 1 h after first cerulein injection. Control groups received saline treatment. After 24 h, biochemical, histological, and immunohistochemical evidences of acute pancreatitis developed in all cerulein-treated mice; apoptosis was also present in the pancreas. Contrarily, pancreatitis histological features, amylase and lipase levels, pancreas water content, and myeloperoxidase activity were reduced in a similar degree in Etanercept-treated and TNFR1-KO mice. Likewise, in these two groups, immunohistochemical stainings and terminal deoxynucleotidyltransferase-mediated UTP nick-end labeling assay were found negative. TNF-alpha receptor 1 gene deletion and Etanercept administration ameliorate the course of experimental acute pancreatitis in a similar degree. Future studies on clinical applications of Etanercept in pancreatitis seem promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.