Abstract
Estrogen has both beneficial and detrimental effects on the cardiovascular system. Selective estrogen receptor modulators (SERMs) exhibit partial estrogen agonist/antagonist activity in estrogen target tissues. Gene targets of estrogen and SERMs in the vasculature are not well-known. Thus, the present study tested the hypothesis that estrogens (ethinyl estradiol, estradiol benzoate, and equilin) and SERMs (tamoxifen and raloxifene) cause differential gene and protein expression in the vasculature. DNA microarray and real-time RT-PCR were used to investigate gene expression in the mesenteric arteries of estrogen and SERM treated ovariectomized rats. The genes shown to be differentially expressed included stearoyl-CoA desaturase (SCD), soluble epoxide hydrolase (sEH), secreted frizzled related protein-4 (SFRP-4), insulin-like growth factor-1 (IGF-1), phospholipase A2 group 1B (PLA2-G1B), and fatty acid synthase (FAS). Western blot further confirmed the differential expression of sEH, SFRP-4, FAS, and SCD protein. These results reveal that estrogens and SERMs cause differential gene and protein expression in the mesenteric artery. Consequently, the use of these agents may be associated with a unique profile of functional and structural changes in the mesenteric arterial circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.