Abstract

Glutamate is the most abundant excitatory brain neurotransmitter that has important functional significance with respect to neurodegenerative conditions. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease (AD) has been gradually becoming elucidated recently. Excessive release of glutamate induces an increase in intracellular Ca(2+) levels, thus triggers a cascade of cellular responses, ultimately leading to neuronal cell death. This type of neuronal damage induced by over-excitation has been proposed to be involved in a number of neuropathological conditions, ranging from acute insults to chronic neurodegenerative disorders. Estrogen could be effective in modulating glutamate-induced neurotoxicity and the protective responsivenesses are mostly estrogen receptors (ERs)-dependent. However, the mechanism underlying estrogen's neuroprotective effect is not fully clarified and is complicated by the presence of several distinct ER types. So a deeper research into the neuroprotection of ERs might be informative about the positive effect that estrogen might have on ageing-related cognitive changes. Extensive studies have indicated the neuroprotective effects of ERs against glutamate-induced neurotoxicity. The purpose of this review is to elucidate ERs' neuroprotective effects against glutamate-induced cytotoxicity and explore new ways to prevent and cure neurotoxicity-associated neurodegenerative disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.