Abstract

The estrogen receptor (ER) repressed erythroid differentiation and erythroid-specific gene expression. In this study, we investigated the effect of ER alpha (referred to throughout as ER) on DNA-binding activities of transcription factors involved in regulating the expression of erythroid-specific genes, and, in particular, the histone H5 gene. Using electrophoretic mobility shift assays, we found that in the presence of rabbit reticulocyte lysate, human ER reduced the binding activities of chicken immature erythrocyte nuclear extracted proteins to GATA and CACCC sites in the H5 promoter and enhancer. In contrast, the binding activities of NF1 and Sp1 were not affected by ER. Binding of ER to an estrogen response element was enhanced by addition of rabbit reticulocyte lysate. This lysate was also necessary for ER to diminish the DNA-binding activity of GATA-1. These results suggest that additional factor(s) are necessary for full ER function. Both GATA-1 and CACCC-binding proteins are critical for the developmentally regulated expression of erythroid-specific genes. We hypothesize that interference in DNA-binding activities of GATA-1 and CACCC-binding proteins is the mechanism by which the ER inhibits regulation of these genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.