Abstract

Estrogen and mechanical forces are positive regulators for osteoblast proliferation and bone formation. We investigated the synergistic effect of estrogen and flow-induced shear stress on signal transduction and gene expression in human osetoblast-like MG63 cells and primary osteoblasts (HOBs) using activations of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and expressions of c-fos and cyclooxygenase-2 (I) as readouts. Estrogen (17β-estradiol, 10 nM) and shear stress (12 dyn/cm2) alone induced transient phosphorylations of ERK and p38 MAPK in MG63 cells. Pretreating MG63 cells with 17β-estradiol for 6 hours before shearing augmented these shear-induced MAPK phosphorylations. Western blot and flow cytometric analyses showed that treating MG63 cells with 17β-estradiol for 6 hrs induced their β1-integrin expression. This estrogen-induction of β1-integrin was inhibited by pretreating the cells with a specific antagonist of estrogen receptor ICI 182,780. Both 17β-estradiol and shear stress alone induced c-fos and Cox-2 gene expressions in MG63 cells. Pretreating MG63 cells with 17β-estradiol for 6 hrs augmented the shear-induced c-fos and Cox-2 expressions. The augmented effects of 17β-estradiol on shear-induced MAPK phosphorylations and c-fos and Cox-2 expressions were inhibited by pretreating the cells with ICI 182,780 or transfecting the cells with β1-specific small interfering RNA. Similar results on the augmented effect of estrogen on shear-induced signaling and gene expression were obtained with HOBs. Our findings provide insights into the mechanism by which estrogen augments shear stress responsiveness of signal transduction and gene expression in bone cells via estrogen receptor–mediated increases in β1-integrin expression. © 2010 American Society for Bone and Mineral Research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.