Abstract

In long QT syndrome type 2, women are more prone than men to the lethal arrhythmia torsades de pointes. We previously reported that 17β-estradiol (E2) up-regulates L-type Ca2+ channels and current (ICa,L) (∼30%) in rabbit ventricular myocytes by a classic genomic mechanism mediated by estrogen receptor-α (ERα). In long QT syndrome type 2 (IKr blockade or bradycardia), the higher Ca2+ influx via ICa,L causes Ca2+ overload, spontaneous sarcoplasmic reticulum Ca2+ release, and reactivation of ICa,L that triggers early afterdepolarizations and torsades de pointes. The purpose of this study was to investigate the molecular mechanisms whereby E2 up-regulates ICa,L, which are poorly understood. H9C2 and rat myocytes were incubated with E2 ± ER antagonist, or inhibitors of downstream transcription factors, for 24 hours, followed by western blots of Cav1.2α1C and voltage-clamp measurements of ICa,L. Incubation of H9C2 cells with E2 (10-100 nM) increased ICa,L density and Cav1.2α1C expression, which were suppressed by the ER antagonist ICI182,780 (1 μM). Enhanced ICa,L and Cav1.2α1C expression by E2 was suppressed by inhibitors of phosphoinositide-3-kinase (Pi3K) (30 μM LY294002; P <.05) and Akt (5 μM MK2206) but not of mitogen-activated protein kinase (5 μM U0126) or protein kinase A (1 μM KT5720). E2 incubation increased p-CREB via the Pi3K/Akt pathway, reached a peak in 20 minutes (3-fold), and leveled off to 1.5-fold 24 hours later. Furthermore, a CREB decoy oligonucleotide inhibited E2-induced Cav1.2α1C expression, whereas membrane-impermeable E2 (E2-bovine serum albumin) was equally effective at Cav1.2α1C up-regulation as E2. Estradiol up-regulates Cav1.2α1C and ICa,L via plasma membrane ER and by activating Pi3K, Akt, and CREB signaling. The promoter regions of the CACNA1C gene (human-rabbit-rat) contain adjacent/overlapping binding sites for p-CREB and ERα, which suggests a synergistic regulation by these pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.