Abstract

In the adult female rat, the densities of dendritic spines and synapses on hippocampal CA1 pyramidal cells are dependent upon the ovarian steroid estradiol; moreover, spine and synapse density fluctuate naturally as ovarian steroid levels vary across the estrous cycle. To determine whether the effects of estradiol on dendritic spine density require activation of specific neurotransmitter systems, we have treated animals concurrently with estradiol and one of four selective neurotransmitter receptor antagonists: MK 801, a noncompetitive NMDA receptor antagonist; CGP 43487, a competitive NMDA receptor antagonist; NBQX, an AMPA receptor antagonist; or scopolamine, a muscarinic receptor antagonist. Our results indicate that the effects of estradiol can be blocked by treatment with either of the NMDA receptor antagonists, but treatment with an AMPA or muscarinic receptor antagonist has no effect on spine density. Thus, we have concluded that estradiol exerts its effect on hippocampal dendritic spine density via a mechanism requiring activation specifically of NMDA receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.