Abstract

Hormonal changes in ovarian hormones like estradiol (E2) during the menstrual cycle affect emotional processes, including emotion recognition, memory, and regulation. So far, the neural underpinnings of the effect of E2 on emotional experience have been investigated using task-based functional magnetic resonance imaging (fMRI) and functional connectivity. In the present study, we examined whether the intrinsic network dynamics at rest (i.e., directed effective connectivity) related to emotion regulation are (1) modulated by E2 levels and (2) linked to behavioral emotion regulation ability. Hence, 29 naturally cycling women participated in two resting-state fMRI scans in their early follicular phase after being administered a placebo or an E2 valerate, respectively. Emotion regulation ability was assessed using a standard emotion regulation task in which participants were asked to down-regulate their emotions in response to negative images. The regions of two functionally predefined neural networks related to emotional down-regulation and reactivity were used to investigate effective connectivity at rest using spectral dynamic causal modelling. We found that E2, compared to placebo, resulted in changes in effective connectivity in both networks. In the regulation network, prefrontal regions showed distinct connectivity in the E2 compared to the placebo condition, while mixed results evolved in the emotional reactivity network. Stepwise regressions revealed that in the E2 condition a connection from the parietal to the prefrontal cortex predicted regulation ability. Our results demonstrate that E2 levels influence effective connectivity in networks underlying emotion regulation and emotional reactivity. Thus, E2 and its potential modification via hormonal administration may play a supporting role in the treatment of mental disorders that show a dysregulation of emotions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.