Abstract
We investigated the involvement of peroxisome proliferator activated receptor-γ (PPAR-γ)/endothelial nitric oxide synthase (eNOS) pathway in estradiol mediated protection against ischemia reperfusion (I/R)-induced acute kidney injury (AKI) in rats. To induce AKI, rats underwent 40min of bilateral renal ischemia followed by 24h of reperfusion. I/R-induced kidney damage was quantified by measuring serum creatinine, creatinine clearance, urea nitrogen, uric acid, potassium, fractional excretion of sodium, microproteinuria, and renal oxidative stress (thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione). Hematoxylin eosin stain demonstrated renal histology, while renal expression of apoptotic markers (Bcl-2, Bax), PPAR-γ and eNOS were quantified by immunohistochemistry. Estradiol (1mg/kg, i.p.) was administered 30min before I/R in rats. In separate groups, PPAR-γ antagonist, BADGE (30mg/kg, i.p.), and NOS inhibitor, L-NAME (20mg/kg, i.p.) were administered prior to estradiol treatment, which was followed by I/R in rats. I/R caused significant renal damage as demonstrated by biochemical (serum/urine), renal oxidative stress and histological changes alongwith increased expression of Bax and decreased levels of Bcl-2, PPAR-γ and eNOS, which were prevented by estradiol. Pre-treatment with BADGE and L-NAME abolished estradiol mediated renoprotection. Notably, I/R + estradiol + BADGE group revealed decreased expression of PPAR-γ and eNOS in renal tissues. In I/R + estradiol + L-NAME group, eNOS expression was reduced while PPAR-γ levels remained unchanged. These results suggest that estradiol modulates PPAR-γ which consequently regulates eNOS expression in rat kidneys. We conclude that estradiol protects against I/R-induced AKI through PPAR-γ stimulated eNOS activation in rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.