Abstract
Verification bias can occur if some of the patients with test results are not selected to receive the gold standard procedure. Unverified cases frequently are not suggestive to be positives. Consequently, the set of verified cases overestimates the number of true positives and underestimates the number of true negatives. The sensitivity and specificity estimates based only on the patients with verified disease are often biased. In this article we derive estimators for sensitivity and specificity not subject to verification bias using a Bayesian approach. Marginal posterior densities of all parameters are estimated using the Gibbs sampler algorithm. An application to the study of accuracy of Hybrid Capture II in the diagnosis of cervical intraepithelial neoplasia grades 2 and 3 illustrates the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.