Abstract

Preferential solute transport is a common phenomenon in soil, and it is of great significance to accurately describe the mechanism of pollutant transport and water and soil environmental governance. However, the description of preferential solutes still relies on applying solute breakthrough curves for model parameters fitting. At present, most of the solute breakthrough curves are obtained indoors, and with some limitations. Therefore, this study established a method for securing solute breakthrough curves based on the electrical resistivity method. The research results show that the change in soil concentration during the tracer infiltration process can be captured by establishing the fitting relationship between soil resistivity and solute concentration. Then the solute breakthrough curve can be found. Through a time moment analysis, the difference between the breakthrough curve parameters obtained by the traditional method and the resistivity method is slight; the average error is less than 10%. On this basis, the sensitive response of the parameters of the “mobile–immobile” model to concentration was elucidated through different concentration tracer experiments, among which β and D are more sensitive, and w is less sensitive. The suitable tracer concentration range should be 50–120 mg/L. Therefore, the established method could obtain the breakthrough curves and describe the transport of preferential solutes at the field scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.