Abstract

A significant problem faced by utility operators is the degradation and failure of wooden cross-arms on transmission line support structures. In this paper, a nondestructive, noncontact, reliable method is proposed, which can quickly and cost-effectively evaluate the structural integrity of these cross-arms. This method utilizes a helicopter-based laser vibrometer to measure vibrations induced in a cross-arm by the helicopter's rotors and engine. An artificial neural network (ANN) then uses these vibration spectra to estimate cross-arm breaking strength. The first type of ANN employed is the feed-forward artificial neural network (FFANN). After proper training, the FFANN can reliably discern healthy cross-arms from those that are in need of replacement based on vibration spectra. Next, a self-organizing map is applied to this same problem, and its advantages are discussed. Finally, a FFANN-based data compression scheme is presented for use as a preprocessor for the vibration spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.