Abstract

The estimation of characteristic parameters such as diameter at breast height (DBH), aboveground biomass (AGB) and stem volume (V) is an important part of urban forest resource monitoring and the most direct manifestation of the ecosystem functions of forests; therefore, the accurate estimation of urban forest characteristic parameters is valuable for evaluating urban ecological functions. In this study, the height and density characteristic variables of canopy point clouds were extracted as Scheme 1 and combined with the canopy structure variables as Scheme 2 based on unmanned aerial vehicle lidar (UAV-Lidar). We analyzed the spatial distribution characteristics of the canopies of different tree species, and multiple linear regression (MLR), support vector regression (SVR), and random forest (RF) models were used to estimate the DBH, AGB, and V of urban single trees. The estimation accuracy of different models was evaluated based on the field-measured data. The results indicated that the model accuracy of coupling canopy structure variables (R2 = 0.69–0.85, rRMSE = 9.87–24.67%) was higher than that of using only point-cloud-based height and density characteristic variables. The comparison of the results of different models shows that the RF model had the highest estimation accuracy (R2 = 0.76–0.85, rRMSE = 9.87–22.51%), which was better than that of the SVR and MLR models. In the RF model, the estimation accuracy of AGB was the highest (R2 = 0.85, rRMSE = 22.51%), followed by V, with an accuracy of R2 = 0.83, rRMSE = 18.51%, and the accuracy of DBH was the lowest (R2 = 0.76, rRMSE = 9.87%). The results of the study provide an important reference for the estimation of single-tree characteristic parameters in urban forests based on UAV-Lidar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.