Abstract
An accurate artificial neural network (ANN) model and new correlation are developed to predict thermal conductivity of functionalized carbon nanotubes (MWNT-10nm in diameter)-water nanofluid based on experimental data. Experimental values of thermal conductivity are in six concentrations of nanoparticles from 0.005% up to 1.5%. The temperatures were changed within 10–60°C. In order to estimate the thermal conductivity, a feed-forward three-layer neural network is utilized. The obtained results exhibited that the new correlation and ANN model have a good agreement with the experimental data. The maximum values of deviation and mean square error of neural network outputs were 2% and 8.2E−05, respectively. The findings illustrated that the artificial neural network can estimate and model the thermal conductivity of CNTs-water nanofluid very efficiently and accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.