Abstract

A microwave imaging technique based on particle swarm optimization (PSO) and asynchronous particle swarm optimization (APSO) are proposed for the electromagnetic inverse scattering. In this article, the finite-difference time-domain (FDTD) method is employed for the analysis of the forward scattering part, while PSO and/or APSO schemes (combining with FDTD) are applied to tackle the inverse scattering part. These two schemes aim for the simultaneous reconstruction of the location, shape, and permittivity of the dielectric scatterer in a slab medium. The reconstruction is based on the minimization of a cost functional, which evaluates the difference between measured and estimated values of the electric field. These two schemes are tested by several numerical examples, and the numerical results indicate that APSO outperforms PSO in terms of reconstruction accuracy and convergence speed. Both techniques have been tested in the case of simulated measurements contaminated by additive white Gaussian noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.