Abstract

Forest monitoring is critical to the management and successful evaluation of ecological restoration in mined areas. However, in the past, available monitoring has mainly focused on traditional parameters and lacked estimation of the spatial structural parameters (SSPs) of forests. The SSPs are important indicators of forest health and resilience. The purpose of this study was to assess the feasibility of estimating the SSPs of restored forest in semi-arid mine dumps using Worldview-2 imagery. We used the random forest to extract the dominant feature factor subset; then, a regression model and mind evolutionary algorithm-back propagation (MEA-BP) neural network model were established to estimate the forest SSP. The results show that the textural features found using 3 × 3 window have a relatively high importance score in the random forest model. This indicates that the 3 × 3 texture factors have a relatively strong ability to explain the restored forest SSPs when compared with spectral factors. The optimal regression model has an R2 of 0.6174 and an MSRE of 0.1001. The optimal MEA-BP neural network model has an R2 of 0.6975 and an MSRE of 0.0906, which shows that the MEA-BP neural network has greater accuracy than the regression model. The estimation shows that the tree–shrub–grass mode with an average of 0.7351 has the highest SSP, irrespective of the restoration age. In addition, the SSP of each forest configuration type increases with the increase in restoration age except for the single grass configuration. The increase range of SSP across all modes was 0.0047–0.1471 after more than ten years of restoration. In conclusion, the spatial structure of a mixed forest mode is relatively complex. Application cases show that Worldview-2 imagery and the MEA-BP neural network method can support the effective evaluation of the spatial structure of restored forest in semi-arid mine dumps.

Highlights

  • The species planted for reforestation in mine dumps of semi-arid areas have been planted based on local conditions such as environmental suitability, after which natural succession occurs

  • The sampling points were divided into two groups, a group of 35 samples used as a training set and another set of 17 samples used as a test set

  • The results indicate that diverse types of lower than thatthan of native

Read more

Summary

Introduction

The species planted for reforestation in mine dumps of semi-arid areas have been planted based on local conditions such as environmental suitability, after which natural succession occurs. This gives forests in these areas the characteristics of having a simple spatial structure and weak heterogeneity, which is different from natural forests. The rapid and accurate estimation of large-scale forest structural parameters is an important basis for formulating sustainable forest management measures [2], especially plantation management [3]. It has huge application potential in forest resource management planning [4]. Few studies have investigated the ability of Worldview in inverting the spatial structure of forests

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.