Abstract

In the present investigation, batch experiments were undertaken in the laboratory for different initial phenol concentration ranging from 10 to 40 mg/L using various types of fine-grained soils namely types A, B, C, D, and E based on physical compositions. The batch kinetic data were statistically analyzed with a three-layered feed-forward artificial neural network (ANN) model for predicting the phenol removal efficiency from the water environment. The input parameters considered were the adsorbent dose, initial phenol concentration, contact time, and percentage of clay and silt content in soils. The response output of the ANN model was considered as the phenol removal efficiency. The predicted results of phenol removal efficiency were compared with the experimental values as obtained from batch tests and also tests for goodness of fitting in ANN model with experimental results. The estimated values of coefficient of correlation (R = 0.99) and mean squared error (MSE = 0.006) reveals a reasonable closeness of experimental and predicted values. Out of five different types of soil, type E exhibited the highest removal efficiency (31.6 %) corresponding to 20 mg/L of initial phenol concentration. A sensitivity analysis was also carried out on the ANN model to ascertain the degree of effectiveness of various input variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.