Abstract

Sheet pile walls are flexible retaining structures that are used to hold the horizontal soil pressures behind them, especially in situations that cause stress changes such as excavation. They are divided into two as cantilever and externally supported. Cantilever walls are used in excavations with a maximum depth of 6 meters and are supported by anchors in excavations deeper than this. Some of the values to be calculated in the design of cantilever sheet pile walls are the embedment depth and the maximum bending moment that(Mmax) will occur in the cross-section of the wall. There are various approaches in analytical methods that have complex calculation steps such as determining earth pressures, solving second and third-order equations. In this study, the Mmax that will occur in the cross-section of a cantilever sheet pile wall penetrates in the sand is estimated by the expressions obtained with the help of multiple linear regression(MLR) analysis. The results showed that the Mmax may not be achieved by only MLR models but with the help of polynomial equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.