Abstract
Low-density closed-cell polyurethane (PU) foams are applied as thermal insulation materials due to their low thermal conductivity imparted by that of the physical blowing agent (PBA) used in foam production. However, foam conductivity tends to gradually increase with time, primarily due to changes in the gas composition in foam cells brought about by gas diffusion. To enable predicting the variation of conductivity during the service life of foam insulation, gas diffusivities are usually determined by measuring the gas composition in foams at different aging times. This study considers an alternative approach of estimating the effective diffusivities of gases in PU foams, which is based on the experimentally determined evolution of foam conductivity. The proposed approach is shown to provide close estimates of the effective diffusion coefficients for PBAs in PU foams when the specimen size and aging duration are such that a significant fraction, ca. 36%, of the PBA leaves the foams during the aging test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.