Abstract
In two-stage randomization designs, patients are randomized to one or more available therapies upon entry into the study. Depending on the response to the initial treatment (such as complete remission or shrinkage of tumor), patients are then randomized to receive maintenance treatments to maintain the response or salvage treatment to induce response. One goal of such trials is to compare the combinations of initial and maintenance or salvage therapies in the form of treatment strategies. In cases where the endpoint is defined as overall survival, Lunceford et al. [2002. Estimation of survival distributions of treatment policies in two-stage and randomization designs in clinical trials. Biometrics 58, 48–57] used mean survival time and pointwise survival probability to compare treatment strategies. But, mean survival time or survival probability at a specific time may not be a good summary representative of the overall distribution when the data are skewed or contain influential tail observations. In this article, we propose consistent and asymptotic normal estimators for percentiles of survival curves under various treatment strategies and demonstrate the use of percentiles for comparing treatment strategies. Small sample properties of these estimators are investigated using simulation. We demonstrate our methods by applying them to a leukemia clinical trial data set that motivated this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.