Abstract
This paper proposes a stochastic frontier panel data model in which unit-specific inefficiencies are spatially correlated. In particular, this model has simultaneously three important features: i) the total inefficiency of a productive unit depends on its own inefficiency and on the inefficiency of its neighbors; ii) the spatially correlated and time varying inefficiency is disentangled from time invariant unobserved heterogeneity in a panel data model a la Greene (2005); iii) systematic differences in inefficiency can be explained using exogenous determinants. We propose to estimate both the true fixed- and random-effects variants of the model using a feasible simulated composite maximum likelihood approach. The finite sample behavior of the proposed estimators are investigated through a set of Monte Carlo experiments. Our simulation results suggest that the estimation approach is consistent, showing good finite sample properties especially in small samples.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.