Abstract

Determining conditional stability constant (Kcond) is paramount in assessing complex stability, particularly in Fe(III) complexes that are prevalent in actual surface water and wastewater matrices. In this study, existing methods of Kcond determination were evaluated and a novel UV–Vis spectroscopy method was proposed based on the evaluation of these approaches. Model ligands (ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and oxalic acid (OA)), as well as common antibiotics (kanamycin (Kana) and tetracycline (TTC)), were employed to determine the Kcond of the Fe(III)-ligand complexes under neutral conditions (pH 6.5). The obtained fitting results revealed that the logKcond were in the order of Fe(III)-EDTA (7.08) > Fe(III)-NTA (4.67) > Fe(III)-OA (4.32) > Fe(III)-TTC (4.28) > Fe(III)-Kana (3.07). In addition to these single ligands, the methodology was extended to the Fe(III) complexation with humic acid (HA), a complex mixture of organic components, where the fitting result indicated a logKcond of 5.02 M−1. The method's application domain was analyzed by numerical analysis and combined with experimental results. The findings demonstrate that the proposed methodology possesses satisfactory measurement capability for Kcond ranging from 103 to 107 M−1, suggesting its broad applicability to the majority of complexes. This method can provide valuable insights into the impact of Fe(III) complexes within the water matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.