Abstract

Soil depth plays an important role in landslide disaster prevention and is a key factor in slopeland development and management. Existing soil depth maps are outdated and incomplete in Taiwan. There is a need to improve the accuracy of the map. The Kriging method, one of the most frequently adopted estimation approaches for soil depth, has room for accuracy improvements. An appropriate soil depth estimation method is proposed, in which soil depth is estimated using Bayesian Maximum Entropy method (BME) considering space distribution of measured soil depth and impact of physiographic factors. BME divides analysis data into groups of deterministic and probabilistic data. The deterministic part are soil depth measurements in a given area and the probabilistic part contains soil depth estimated by a machine learning-based soil depth estimation model based on physiographic factors including slope, aspect, profile curvature, plan curvature, and topographic wetness index. Accuracy of estimates calculated by soil depth grading, very shallow (<20 cm), shallow (20–50 cm), deep (50–90 cm), and very deep (>90 cm), suggests that BME is superior to the Kriging method with estimation accuracy up to 82.94%. The soil depth distribution map of Hsinchu, Taiwan made by BME with a soil depth error of ±5.62 cm provides a promising outcome which is useful in future applications, especially for locations without soil depth data.

Highlights

  • Soil depth plays an important role in landslide disaster prevention and management

  • One is that the scale of slopeland soil map is 1/25,000 which is too coarse to reflect space distribution of soil depth; the other is that the map is not up-to-date and failed to consider the impact of relevant physiographic factors on soil depth

  • An appropriate soil depth estimation model is necessary in Taiwan for two reasons: existing soil

Read more

Summary

Introduction

Soil depth plays an important role in landslide disaster prevention and management. In Taiwan, soil depth is used as for slopeland control by local governments. The grade of a slopeland is a key factor in determining whether it is applicable for agriculture or forestation only. Because this grading system is widely used by engineers, it is adopted here as the soil category system

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.