Abstract

The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy conver- ters operating in the resonance region, more complete mathematical models such as computational fluid dynamics are preferred and over the last 5 years, computational fluid dynamics has become more frequently used in the wave energy field. However, rigorous estimation of numerical errors, convergence rates and uncertainties associated with computa- tional fluid dynamics simulations have largely been overlooked in the wave energy sector. In this article, we apply formal verification and validation techniques to computational fluid dynamics simulations of a passively controlled point absor- ber. The phase control causes the motion response to be highly nonlinear even for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretiza- tion, iterative and domain modelling errors. It is shown that the dominating source of errors is, as expected, the spatial discretization, but temporal and iterative errors cannot be neglected. Using hexahedral cells with low aspect ratio and 30 cells per wave height, we obtain results with less than 5% uncertainty in motion response (except for surge) and restraining forces for the buoy without phase control. The amplified nonlinear response due to phase control caused a large increase in numerical uncertainty, illustrating the difficulty to obtain reliable solutions for highly nonlinear responses, and that much denser meshes are required for such cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.