Abstract

AbstractThe viscosity‐average molecular weight, Mv, of a polymer is given operationally through its limiting viscosity number [η] and the Mark‐Houwink equation [η] = KMvα, where K and α are empirical constants. If [η] is measured under different conditions, α and Mv will vary for the same sample. Mvα is the α‐order moment about the origin of the differential weight distribution of the polymer. Practically, the results of a series of Mv measurements on the same polymer are equivalent to a cluster of fractional moments of the weight distribution, with orders between 0.55 and 0.80. It is shown that the first moment of this distribution, Mw, may be estimated reliably by a straightline plot of Mv against α‐extrapolated to α equals 1. This simple expedient is effective although there are probably no molecular weight distributions in which the relation is strictly linear and there are no mathematical distributions for which the αth root of the αth moment is a linear function of α for all α. The deviation from linearity is small enough, however, that the real curve can be represented by a straight line over a short range of α. Thus, Mw can be measured accurately, but Mn, Mz, or the breadth of the distribution is not accessible by this method. Experimental and literature examples show that the precision of Mw estimated by this method compares well with that of primary methods for measuring this molecular weight average. If a linear relationship is observed with reliable α values, this appears to be a sufficient condition for estimation of a valid Mw.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.