Abstract

The aim of this study was to estimate and compare the muscular metabolic power produced in the human body using musculoskeletal inverse-dynamics during cross-country sit-skiing. Two sitting positions were adapted for athletes with reduced trunk and hip muscle control, knee low with frontal trunk support (KL-fix), and knee high (KH). Five female national class able-bodied cross-country skiers performed submaximal and maximal exercise in both sitting positions, while recording 3-D kinematics, pole forces, electromyography and respiratory variables. Simulations were performed from these experimental results and muscular metabolic power was computed. The main part of the muscle metabolic power was produced in the upper limbs for both sitting positions, but KH produced more muscle metabolic power in lower limbs and trunk during maximal intensity. KH was also more efficient, utilizing less muscular metabolic power during submaximal intensities, relatively less power in the upper limbs and more power in the trunk, hip and lower limb muscles. This implies that sitting position KH is preferable for high power output when using able-bodied simulation models. This study showed the potential of using musculoskeletal simulations to improve the understanding of how different equipment design and muscles contribute to performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.