Abstract

A 1.5-dimensional, 1.5-layer shallow water model and an ensemble Kalman filter are used to evaluate the feasibility of estimating friction parameters and determining friction laws of oceanic gravity currents. The two friction laws implemented are a linear Rayleigh friction and a quadratic drag law. We demonstrate that the assimilation procedure rapidly estimates the total frictional force, whereas the distinction between the two laws is evolving on a slower time scale. We also demonstrate that parameter estimation can, in this way, choose between different parametrisations and help to discriminate between physical laws of nature by estimating the coefficients presented in such parametrisations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.