Abstract

AbstractThis study explores the application of computational chemistry to estimate free radical polymerization rate coefficients. The Evans‐Polanyi relationship is combined with computed heats of polymerization to estimate copolymerization reactivity ratios for many vinyl monomer pairs, focusing on acrylates, methacrylates and styrene, with accuracy assessed by comparison to experimental values. The effect of different optimization approaches on the values of thermodynamic properties is explored, and it is concluded that a combination of conventional optimization and relaxed potential energy scans was most effective at identifying global minima. The difference between thermodynamic properties calculated using the harmonic oscillator treatment and a hindered rotor model is evaluated for methyl methacrylate polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.