Abstract
The X-ray source or focal radiation is one of the factors that can degrade the conformal field edge in stereotactic body radiotherapy. For that reason, it is very important to estimate the total focal radiation profiles of linear accelerators, which consists of X-ray focal-spot radiation and extra-focal radiation profiles. Our purpose in this study was to propose an experimental method for estimating the focal-spot and extra-focal radiation profiles of linear accelerators based on triple Gaussian functions. We measured the total X-ray focal radiation profiles of the accelerators by moving a slit in conjunction with a photon field p-type silicon diode. The slit width was changed so that the extra-focal radiation could be optimally included in the total focal radiation. The total focal radiation profiles of an accelerator at 4-MV and 10-MV energies were approximated with a combination of triple Gaussian functions, which correspond to the focal-spot radiation, extra-focal radiation, and radiation transmitted through the slit assembly. As a result, the ratios of the Gaussian peak value of the extra-focal radiation to that of the focal spot for 4 and 10MV were 0.077 and 0.159, respectively. The peak widths of the focal-spot and extra-focal radiation profiles were 0.57 and 25.0mm for 4MV, respectively, and 0.60 and 22.0mm for 10MV, respectively. We concluded that the proposed focal radiation profile model based on the triple Gaussian functions may be feasible for estimating the X-ray focal-spot and extra-focal radiation profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.