Abstract

The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N0) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(lux)]. The relationships between the monthly average of global solar radiation (Rs), N0, and Ne(lux) were investigated. At low light intensity (<500 lx), Ne(lux) were almost the same as N0. At high light intensity (>10,000 lx), Ne(lux) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.

Highlights

  • Day length is an important environmental factor that affects all living things

  • Continual global solar radiation (Rs) observation data were gathered from the baseline surface radiation network (BSRN) of stations located from 50°N to 50°S over a period of 4 years between 2004 and 2007 [14]

  • We have developed a simple method for estimating the effective day length at any light intensity using solar radiation data

Read more

Summary

Introduction

Day length is an important environmental factor that affects all living things. These influences depend on the species, namely, the critical day length or the light sensitivity is different for each creature. The sensitivity of the human circadian melatonin rhythm is not the same as the photosensitivity of flower bud formation in plants. Relatively high light intensities (50–600 lx) can induce considerable phase shifts in the human circadian melatonin rhythm [1]. Modulation of circadian rhythms by light is thought to be mediated primarily by melanopsin containing retinal gangrion cells. Melanopsin cells are intrinsically blue light sensitive, and one cannot make melatonin when blue light levels are too high [2,3,4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.