Abstract

As a vital parameter describing the Earth surface energy budget, surface all-wave net radiation ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> ) drives many physical and biological processes. Remote estimation of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> using satellite data is an effective approach to monitor the spatial and temporal dynamics of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> . Accurate daily <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> estimation typically depends on the spatio-temporal resolutions of satellite data. There are currently few high-spatial-resolution daily <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> products from polar-orbiting satellite data, and they exhibit limited accuracy due to sparse diurnal observations. In addition, traditional estimation approaches typically require cloud mask and clear-sky albedo as inputs and ignore the length ratio of daytime (LRD), which may lead to large errors. To overcome these challenges and obtain <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> data with improved spatial resolution and accuracy, an operational approach was proposed in this study to derive daily 1-km <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> , which takes the advantages from a radiative transfer model, a machine learning algorithm, and multispectral and dense diurnal temporal information of geostationary satellite observations. An improved all-sky hybrid model (AHM) coupling radiative transfer simulations with a random forest (RF) model was first developed to estimate the shortwave net radiation ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> ). Then, another RF model was developed to estimate the daily <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> , incorporating the LRD, which is called extended hybrid model (EHM). Data from the Advanced Baseline Imager (ABI) onboard the new-generation Geostationary Operational Environmental Satellite (GOES)-16 with a 5-min temporal resolution and a 1-km spatial resolution were used to test the proposed method. Compared to traditional lookup table (LUT) algorithms, the results show that AHM not only makes the process of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> estimation simple and efficient but also has high accuracy in estimating instantaneous all-sky <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> . Benefiting from high spatio-temporal resolutions, our daily <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> estimates using GOSE-16 data exhibited superior performance compared to using the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) and 1° Clouds and the Earth’s Radiant Energy System (CERES) product. Using accurate daily <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> estimates and LRD as inputs, the EHM model shows reasonably good results for estimating <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R^{2}$ </tex-math></inline-formula> , RMSE, and bias of 0.91, 20.95 W/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , and −0.05 W/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , respectively). Maps of 1-km <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> exhibit similar spatial patterns to those from the 1° CERES product, but with substantially more spatial details. Overall, the proposed <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> retrieval scheme can accurately estimate all-sky 1-km <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{ns}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> at mid- to low-latitudes and can be easily adapted and applied to other GOES- 16-like satellites, such as Himawari-8, Meteosat Third Generation (MTG), and Fenyun-4. This study demonstrates the advantages of estimating <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$R_{n}$ </tex-math></inline-formula> using geostationary satellites with improved accuracy and resolutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.