Abstract

The joint estimation of carrier frequency offset (CFO) and channel transfer function (CTF) for orthogonal frequency-division multiplexing (OFDM) systems with phase noise is discussed in this paper. A CFO estimation algorithm is developed by exploring the time-frequency structure of specially designed training symbols, and it provides a very accurate estimation of the CFO in the presence of both unknown frequency-selective fading and phase noise. Based on the estimated CFO, phase noise and frequency-selective fading are jointly estimated by employing the maximum <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a posteriori</i> (MAP) criterion. Specifically, the fading channel is estimated in the form of the frequency-domain CTF. The estimation of the CTF eliminates the requirement of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">a priori</i> knowledge of channel length, and it is simpler compared with the time-domain channel impulse response (CIR) estimation methods used in the literature. Theoretical analysis with the Cramer-Rao lower bound (CRLB) demonstrates that the proposed CFO and CTF estimation algorithms can achieve near-optimum performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.